

Landmark Recognition

A multi-class image classification problem.

Problem Statement

Are you a travel photographer who's photo archive look like this? Thousands of rows of DSC_XXXX.jpg files...

🔍 🔍 💼 2020-11-14 Noctua III					
$\langle \rangle$		🖞 🗨 Q Search			
🙏 Applications	Name	^ Date Modified	Size	Kind	
Movies	🖾 DSC_8188.JPG	Nov 14, 2020 at 8:20 PM	21.1 MB	JPEG	
Dictures	🖾 DSC_8188.NEF	Nov 14, 2020 at 8:20 PM	44.8 MB	Niko	
	🖬 DSC_8189.JPG	Nov 14, 2020 at 8:21 PM	18.1 MB	JPEG	
Documents	🔤 DSC_8189.NEF	Nov 14, 2020 at 8:21 PM	41.9 MB	Niko	
🛄 Desktop	DSC_8190.JPG	Nov 14, 2020 at 8:24 PM	22.8 MB	JPEG	
	DSC_8190.NEF	Nov 14, 2020 at 8:24 PM	44.7 MB	Niko	
Recents	SC_8191.JPG	Nov 14, 2020 at 9:03 PM	19.6 MB	JPEG	
🔊 AirDrop	SC_8191.NEF	Nov 14, 2020 at 9:03 PM	42.6 MB	Niko	
Downloads	DSC_8192.JPG	Nov 14, 2020 at 9:05 PM	18.6 MB	JPEG	
-	DSC_8192.NEF	Nov 14, 2020 at 9:05 PM	42.1 MB	Niko	
🎵 Music	🔤 DSC_8193.JPG	Nov 14, 2020 at 9:08 PM	18.8 MB	JPEG	
Creative Cloud	📼 DSC_8193.NEF	Nov 14, 2020 at 9:08 PM	42.1 MB	Niko	
	📼 DSC_8194.JPG	Nov 14, 2020 at 9:08 PM	18.8 MB	JPEG	
iCloud	dsc_8194.NEF	Nov 14, 2020 at 9:08 PM	42.1 MB	Niko	
lCloud Drive	DSC_8195.JPG	Nov 14, 2020 at 9:08 PM	19.2 MB	JPEG	
	DSC_8195.NEF	Nov 14, 2020 at 9:08 PM	42.7 MB	Niko	
Locations	DSC_8196.JPG	Nov 14, 2020 at 9:09 PM	17.6 MB	JPEG	
📕 Alp's Extern ≜	DSC_8196.NEF	Nov 14, 2020 at 9:09 PM	41.6 MB	Niko	
	DSC 8197.JPG	Nov 14. 2020 at 9:09 PM	17 MB	JPEG	

Problem Statement

Landmark recognition can help label the photos you take while travelling, making your travel archives more human-readable. We aim to predict labels through image pixels.

Thus, you can understand your archives and search for the picture you have taken years ago easily.

Team WAM (Will-Alp-Mason)

Will Ledig COMP, DSCI Hanszen '21

- Preprocessing
- Preliminary Data Analysis
- PyTorch Implementation

Mason Reece SOPA, POLI, DSCI Hanszen '22

- Preliminary Data Analysis
- Literature Search & Algorithms
- PyTorch Implementation

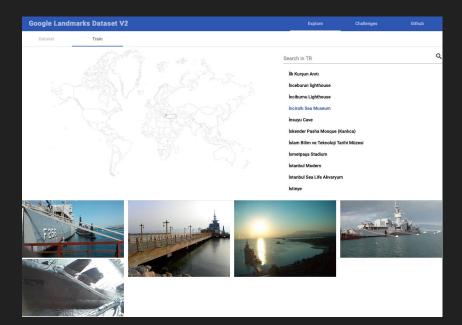
- B. Alp Yakici COMP, DSCI Hanszen '22
- HPC Person
- Presentation
- Literature Search & Algorithms

Dataset

We use Google Landmarks Dataset v2 (GLDv2) for our training set.

Advantages

- Publicly available.
- Easy to download (comes with a Shell script that downloads from AWS S3).
- Comes with online dataset explorer.
- 98.27 GB worth of labeled data.
 - Corresponds to 3.2 million images.



Dataset explorer on Google APIs.

"Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval" T. Weyand*, A. Araujo*, B. Cao, J. Sim Proc. CVPR'20

Dataset

We use Google Landmarks Dataset v2 (GLDv2) for our training set.

Disadvantages

- Very unwieldy.
- Some labels are very generic.
 - Several landmarks have wide range of photos with different subjects.
- Wide range of dimensions.
 - Need for a significant preprocessing pipeline.

Images that are classified as "Illulissat," which is a municipality in Greenland.

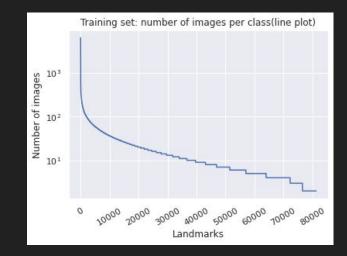
"Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval" T. Weyand*, A. Araujo*, B. Cao, J. Sim Proc. CVPR'20

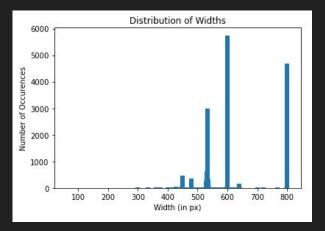
Wide Range of Labels / Dimensions

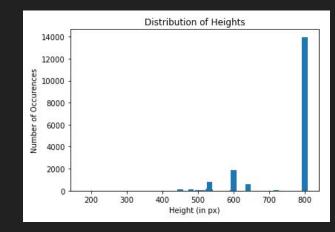
Wide Range of Data for One Label

Preliminary Data Analysis

- Only about half of the landmarks (40,000) had more than 10 images in the dataset.
- Less than 2000 landmarks had more than 100 images.
- Majority of images with larger height than width.
- Most common dimensions were 800 x 600 px.







Preprocessing

- Decided to only use landmarks with at least a set number of images (i.e. 250+, 500+, 1000+).
- Split our training data into train and validation set, 80-20% split.
- Resizing to 48x48 pixels, random horizontal flipping.
- Considered more transformations, but due to already noisy, minimal data, we decided not to do so.

Models & Algorithms

Models & Algorithms

Deep Convolutional Neural Networks (DCNNs)

- **Pretrained Feature Extractor:** EfficientNet B7
- Loss Function: ArcFace
- Optimizer: Stochastic Gradient Descent (SGD)
- Adjusting Learning Rate: Cosine Annealing
- **Verification/Evaluation:** Micro Average Precision (µAP)

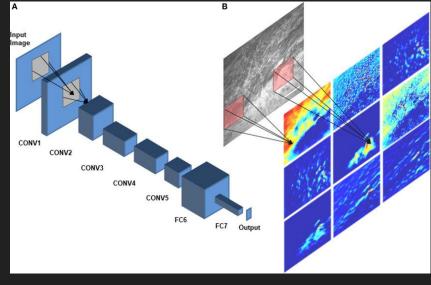
Deep Convolutional Neural Networks (DCNNs)

Pre-Trained Feature Extractor: EfficientNet by Google

- A family of image classification pre-trained models.
- Originally for Tensorflow, however:
 - PyTorch implementation is provided by effnet-pytorch module.
- Used B7.

Advantages

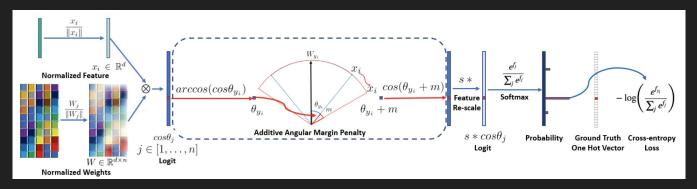
- Publicly available on GitHub.
- Pre-trained, relatively small, and efficient.



DCNN Architecture

Loss Function: ArcFace

- ArcFace: Additive Angular Margin Loss for Deep Face Recognition
- Improves the discriminative power of the model.
 - Makes it easier to distinguish different landmarks.
- Code is published online on GitHub.



J. Deng, J. Guo, N. Xue and S. Zafeiriou, "ArcFace: Additive Angular Margin Loss for Deep Face Recognition," 2019

Optimizer: Stochastic Gradient Descent (SGD)

• Performs parameter update for each training image and its associated label.

Advantages

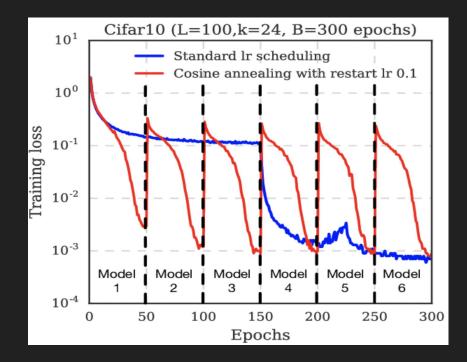
- Easy to implement and fast.
- Doesn't require a huge amount of memory.
- Learns online.
 - Allows us to compute best weights at each epoch.

Disadvantages

- High variance, results in our function to fluctuate.
- Requires more epochs.
 - Hence, we run the training on HPC for about 9:00:00 hrs.
 - We were not able to do that yet.

+ Adjusting Learning Rate: Cosine Annealing

- Start with a large learning rate (LR).
- Rapidly decrease LR to a minimum value before rapidly increase again.
- Resetting of the LR acts like a *simulated* restart of the learning process.
- This is called a "warm restart," as we reuse good weights as the starting point of the restart (in contrast to "cold restart").



I. Loshchilov and F. Hutter, "SGDR: STOCHASTIC GRADIENT DESCENT WITH WARM RESTARTS," Proc. ICLR'17

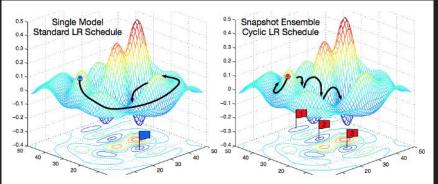
+ Adjusting Learning Rate: Cosine Annealing

Advantages

- Increases the chances of finding a much better minimum.
 - "Jumps" out of a local minimum that is far from the global minimum.

Disadvantages

• Requires relatively high number of epochs to outperform standard LR schedules.



I. Loshchilov and F. Hutter, "SGDR: STOCHASTIC GRADIENT DESCENT WITH WARM RESTARTS," Proc. ICLR'17

Evaluation

Micro Average Precision (μ AP) is used for evaluating our model. μ AP measures both ranking and the consistency of the scores across multiple queries.

- Foreach test image, predict one label and a confidence score.
- Sort the list of predictions in descending order by the confidence scores.

$$\mu AP = \frac{1}{M} \sum_{i=1}^{N} P(i) \ rel(i)$$

F. Perronnin, Y. Liu, and J.-M. Renders, "A Family of Contextual Measures of Similarity between Distributions with Application to Image Retrieval," Proc. CVPR'09

Micro Average Precision (µAP)

$$\mu AP = \frac{1}{M} \sum_{i=1}^{N} P(i) \ rel(i)$$

Parameters:

- M: Total number of queries with >= 1 landmark in the training set.
- N: Total number of predictions across all queries.
- *P(i)*: Precision at rank i.
- *rel(i)*: Relevance in prediction i.
 - \circ It is 1 if the ith prediction is correct. Otherwise, it is 0.

F. Perronnin, Y. Liu, and J.-M. Renders, "A Family of Contextual Measures of Similarity between Distributions with Application to Image Retrieval," Proc. CVPR'09

Micro Average Precision (µAP)

Why µAP?

- µAP considers consistency of the scores.
 - Thus, using Micro Average Precision is preferable since there are label imbalances, as we observed in our preliminary data analysis.
- Ranking can be computed asynchronously with accumulators.
 - Evaluation is performed faster.

F. Perronnin, Y. Liu, and J.-M. Renders, "A Family of Contextual Measures of Similarity between Distributions with Application to Image Retrieval," Proc. CVPR'09

Results

+ Alternative Models & Algorithms

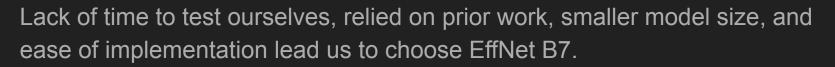
µAP Score

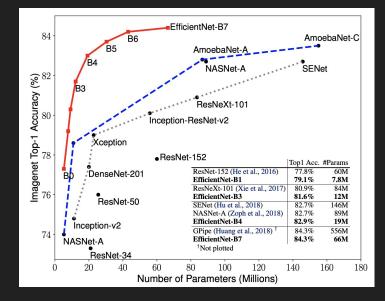
- Trained small subset of the dataset on our local desktop.
 - 48 x 48px Images
 - 1 x Nvidia GTX 2060
 - 7 Epochs
 - Result: µAP = ~0.15 0.20.
- We expect µAP = ~0.40 0.50.
 - On 128 x 128px Images
 - Rice NOTS HPC Clusters (2 x Tesla V100 or Tesla K80)
- Best solutions achieve $\mu AP = 0.60 0.65$.

Pretrained Model Options

• VGG-16

- 74.5% top-1 test accuracy in ImageNet dataset.
- Large model size.
- Residual Network (ResNet)
 - Winner of 2015 ImageNet challenge.
 - Deeper than VGG-16 and smaller size.
- EfficientNet
 - 84.3% top-1 test accuracy in ImageNet dataset.
 - Even smaller.





Loss Function Selection

Loss	LFW	CFP-FP	AgeDB-30
Softmax	99.7	91.4	95.56
SphereFace (m=4, $\lambda = 5$)	99.76	93.7	97.56
CosineFace (m=0.35)	99.80	94.4	97.91
ArcFace(m=0.4)	99.80	94.5	98.0
ArcFace(m=0.5)	99.83	94.04	98.08

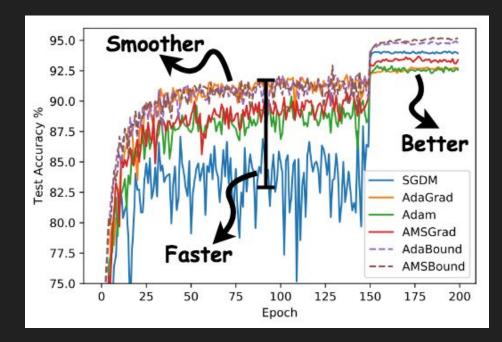
Verification performance (%) of models on the following datasets:

- LFW: Labeled Faces in the Wild
- CFP-FP: Celebrities in Frontal-Profile in the Wild
- AgeDB-30: In-the-Wild Age Database

J. Deng, J. Guo, N. Xue and S. Zafeiriou, "ArcFace: Additive Angular Margin Loss for Deep Face Recognition," 2019

Optimizer Selection

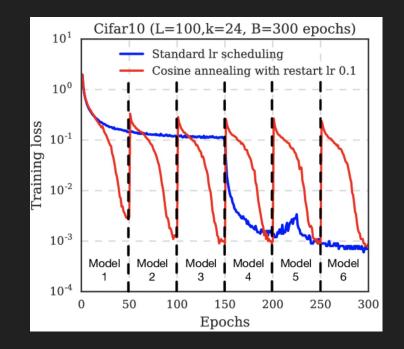
- Adam
 - Smoother.
- SGD
 - Faster.
- AdaBound
 - $\circ \quad {\rm Mix.}$



D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," 2017

Adaptive Learning Rate Selection

- Static LR
 - Easy to implement.
 - Not optimal.
- Jittering
- Step-LR
 - To decrease slowly.

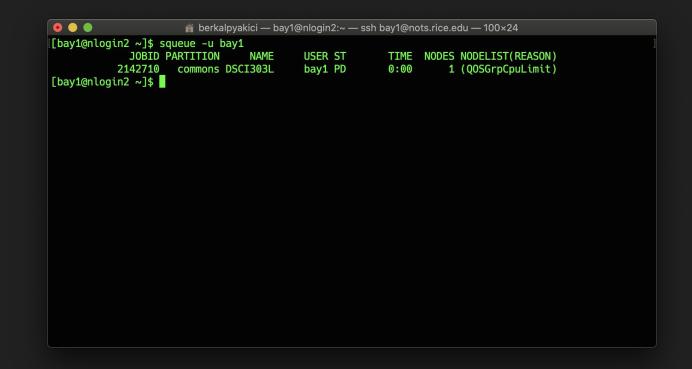


I. Loshchilov and F. Hutter, "SGDR: STOCHASTIC GRADIENT DESCENT WITH WARM RESTARTS," Proc. ICLR'17

Conclusion

Improvements & Future Work

- Larger images (128 or 256 px).
- Multiple model comparison and ensemble methods.
- Training on larger epochs.
- Schedule Multi-GPU NOTS jobs.



Hopefully, our model will be trained on NOTS one day...

Thank You